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* Ais maximum degree, a is the size of the largest
independent set, x is the chromatic number

H
p is the Hall ratio max 1Ml
@#HcG a(H)

Xr is the least k such that there’s a probability distribution on
independent sets such that for all v, Pr(vel) > 1/k

X¢ is the least k such that whenever the vertices of a graph are
given lists of k allowed colors, there is a proper coloring using
allowed colors

® Xc is more general: for each edge uv specify an arbitrary
matching of ‘forbidden pairs’ from the lists L(u) and L(v)

® Inany graph p < Xf S X< X1 < Xc



Greedy algorithm: x <A+1

Brooks (1941): this is tight only for odd cycles and cliques
Descartes (Tutte, 1954): there are triangle-free graphs with
arbitrarily large chromatic number

Vizing (1968): posed the problem of bounding x in terms of A
for triangle-free graphs

Various authors (1977-8): for triangle-free graphs x < %(A+ 2);
Kostochka (1978): x < 3(A+ 3)

Johansson (1996): x < O(A/logA)
Molloy (2019): x < (1 +0(1))A/logA



Greedy algorithm still works: x; <A+ 1
Vizing (1976) gave the list version of Brooks’ theorem

Methods of Johansson (1996) and Molloy (2019) also apply to
list coloring: for triangle-free graphs x;(G) < (1 + o(1))A/logA

Greedy algorithm still works: xc <A+1

Bernshteyn, Kostochka and Pron (2017) gave a corresponding
version of Brooks’ theorem

Bernshteyn (2016, 2019) adapted the methods of Johansson
and Molloy: for triangle-free graphs xc < (1 + 0(1))A/logA



Erdds (1967) asked for the greatest chromatic number among
n-vertex triangle-free graphs

Related to the classic Ramsey problem of finding the largest
independent set in triangle-free graphs as iteratively pulling
out such sets gives a coloring, cf. Erdés and Hajnal (1985)

Each of p < Xf < X < X¢ < Xc has a Ramsey-type question

Bounding p = maxg£Hce % in K-free graphs is classic

Ramsey theory, bounding each of the others is harder
Mostly we don’t know the correct dependence of p on n, but
the question of how close the bound for x can be made to the
best-known for p is still interesting



Ajtai, Komlés and Szemerédi (1980): p < O(+/n/Togn)
Shearer (1983) improved to (¥2 + o(1))v/n/logn
lterating gives x < (242 + o(1))v/n/Togn

What is that extra factor ‘2" doing there?

Pulling out independent sets does not seem to work for list (or
correspondence) coloring. What is the correct order of growth?

Cames van Batenburg, de Joannis de Verclos, Kang, and Pirot
(2020) asked such questions, while proving

Xf <(2+o0(1))y/n/logn  and  x; <O(/N)

The correct growth rate for xc is actually ©(n/logn)

(cf. Krdl', Pangrac, and Voss 2005 and Bernshteyn 2016, 2019)



For chromatic number we match the previous bound for
fractional chromatic number: x < (2+ o(1))+v/n/logn

So we now ask why there is an extra factor ‘v2'..

For list chromatic number we show x; < O(\/W)

Our method highlights subtle aspects of list coloring: bounds in
terms of color-degree, etc...

Adapting existing methods also yields bounds in terms of the
number of edges or genus that are tight up to a constant
factor, cf. Poljak and Tuza (1994), Nilli (Alon, 2000), Gimbel and
Thomassen (2000)

The paper is here: https://doi.org/10.1137/21M1437573
and here: https://arxiv.org/pdf/2107.12288


https://doi.org/10.1137/21M1437573
https://arxiv.org/pdf/2107.12288

Ignore all o(1) terms and prove x < 2+4/n/logn by induction
We are done by Molloy’s theorem if A< 4/nlogn

Let v be a vertex of larger degree and let G’ =G — N(v) on
n’” <n-—+/nlogn vertices
Since N(v) is independent, x(G) < 1+ x(G’) and by induction,

n’ n—+/nlogn n
X(G') <2 <[22V —1
logn’ logn logn

Exercise: extend this sketch to a correct proof!




® |Let each vertex have a list L(Vv) of allowed colors

® Can’'t assume all neighbors of v are allowed the same color

® But there’s a notion of color-degree that works: for c € L(v),
deg; (v, ¢) is the number of neighbors of v that have color ¢ on
their list

* Happily, due to Amini and Reed (2008), Alon and Assadi (2020),
or even Anderson, Bernshteyn and Dhawan (2022+) we have a
color-degree analogue of Johansson’s theorem

If L is a list-assignment for a triangle-free graph G such that
IL(V)| = (4 + o(1))d/logd and every deg, (v, c) <d, then G
admits an L-coloring



If all color-degrees are O(4/nlogn) then done by theorem

Otherwise, there's a vertex v, a color c € L(v), and a large set
Sc € N(v) such that ce L(w) for w e S,

Color S¢ with ¢ and let G’ = G — S¢ with lists L’(w) = L(w) \ {c}
Observe that G admits an L-coloring if G’ admits an L’-coloring

Set up the constant factors and an induction hypothesis such
that G’ admits an L’-coloring by induction

Some constant factor loss due to pesky ‘4’ in the theorem

Improving ‘4’ to ‘1’ in the theorem is an open problem,
conjectured by Cambie and Kang (2021) and Anderson,
Bernshteyn and Dhawan (2022+); would imply the same
bound on x; that we proved for x



Kelly and Postle (2018+) posed a conjecture which would allow
us to remove the ‘2’ and match Shearer’s upper bound for p
in triangle-free graphs with a bound for xs

Their conjecture is equivalent to the existence of a probability
distribution on independent sets in a triangle-free graph such
that for every vertex v

gdeg(v)

Pr(vel) > (1—0(1))
deg(v)

cf. Shearer (1991) a > 3} cy(6)(1— o(l))'oggge(gv()")

I do not know of any analogous conjecture/argument that
would show we can remove a ‘v2' for x or x;

This seems interesting!



® The theorem of Anderson, Bernshteyn and Dhawan actually
states that for an arbitrary graph G with list assignment L, if
(a) IL(V)| = (4 +o0(1))d/logd
(b) deg, (v, c) <d for all color degrees
(c) for all colors ¢, the subgraph of G induced by the vertices
with c on their lists is triangle-free

then G admits an L-coloring.

® That is, we can push the triangle-freeness onto the ‘cover
graph’ which represents conflicts between colors on lists of G

* Actually, their theorem holds for correspondence coloring. ..
e Still, it seems reasonable that ‘4’ can be reduced to ‘1’



An alternative perspective seeks results with ‘local’ bounds:
Let G be a triangle-free graph with list assignment L such that
for all vertices v and colors c € L(v) we have

IL(V)| = (1 +€)deg (v, c)/logdeg, (v, c)

Additional conditions are needed for an L-coloring

(D., de Joannis de Verclos, Kang, and Pirot 2020)

e.g. for some d = do(€) we need polylog(d) < deg;(v,c) <d
Kelly (2019) conjectures (roughly) that in this case G should
indeed admit an L-coloring

D., de Joannis de Verclos, Kang, and Pirot (2020) proved this
when the bound is in terms of deg(v) instead of color-degree

Kelly showed that the full version of his conjecture implies the
probability distribution conjecture of Kelly and Postle!

What about pushing triangle-freeness into the cover?



Versions of Molloy’s theorem are known for other ‘locally
sparse’ conditions which invites applications of our methods to
a range of x-Ramsey questions

We decided not to do this, as it largely concerns chasing
constant factors in bounds we don’t know are tight

Many of the best-known bounds here follow from adaptations
of Molloy’s method (D., Kang, Pirot and Sereni 2020+) but
these methods are not known to work with color-degrees

Recent works of Anderson, Bernshteyn and Dhawan (2021 +,
2022+) are based on Johansson’s earlier approach and give
color-degree results in K¢+ or K1,¢,¢+-free graphs



The ideal result is that L-colorings exist when for all c € L(V),
IL(V)| = (1 + o(1))deqg, (c, v)/logdeg, (c, v) and the cover is
triangle-free, with the mildest lower bounds on degrees possible
(in fact, the correspondence version of this)



