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Abstract. We develop a theory of regularity inheritance in 3-uniform
hypergraphs. As a simple consequence we deduce a strengthening of a
counting lemma of Frankl and Rödl. We believe that the approach is
sufficiently flexible and general to permit extensions of our results in the
direction of a hypergraph blow-up lemma.

1. Introduction

Szemerédi’s regularity lemma [15] states that any graph G has a ‘regular
partition’ into a bounded number of pieces, almost all of which are quasiran-
dom. An accompanying counting lemma tells us that the number of copies
of any small subgraph in G is approximately the same as would be expected
if the pieces were genuinely random. There are various generalisations to
hypergraphs (e.g. [6, 7, 14] which have been instrumental in solving important
problems.

The blow-up lemma of Komlós, Sárközy and Szemerédi [9] is a powerful
development of the counting lemma. It uses a randomised embedding al-
gorithm to show that we can actually embed certain spanning subgraphs
into suitable pieces of the partition produced by the regularity lemma. A
technical condition called ‘image restrictions’ is permitted; a useful feature
for applications, e.g. [1].

Keevash [8] proved a hypergraph blow-up lemma, but there are significant
technical difficulties in establishing and applying the result. Complexity
arises from the kind of hypergraph regularity used, known as the regular
approximation lemma of Rödl and Schacht [13]. Furthermore, Keevash’s
result only allows for a weak form of image restriction which makes it hard
to use.

We describe a simple proof of a counting lemma for 3-uniform hypergraphs
(3-graphs) using regularity inheritance, a technique we develop. The merits
of our approach are connected with the simple kind of 3-graph regularity
we use. A hypergraph blow-up lemma proved using these ideas is a work
in progress. In particular, we seek to allow a number of vertices and pairs
to be suitably image restricted, stronger than the restriction permitted by
Keevash [8].
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In future work we seek to generalise our techniques to k-uniform hyper-
graphs for k > 3. There are significant difficulties here, for some of the tools
we use to establish regularity inheritance lemmas are not yet well-developed
in higher uniformities. In particular a local characterisation of hypergraph
regularity is important for our methods, and for algorithmic proofs. We
also hope that our approach will generalise to the ‘sparse setting’, that is,
when we work with a hypergraph which is a relatively dense subgraph of a
sparse but pseudorandom hypergraph. A counting lemma for this setting was
recently proved by Conlon, Fox and Zhao [3], but no counterpart blow-up
lemma is known.

2. Results

Our notation resembles that of [3]. We identify graphs and 3-graphs with
their edge sets. The neighbourhood of a vertex x in a graph or 3-graph F is
F (x) := {e \ x : x ∈ e ∈ F}, and we write F [W ] for the induced subgraph
on vertex set W . Let ∂e = {f ( e : |f | = |e| − 1}. Functions gf , he are the
indicators for edge sets of graphs G and 3-graphs H respectively. All sets are
finite. For an index set J and vertex sets {Vj}j∈J , let VJ :=

∏
j∈J Vj . We

write xJ for an element of VJ , that is, the vector (xj)j∈J with xj ∈ Vj . Write
E[g(xJ)|xJ ∈ VJ ] for the expectation over xJ chosen uniformly at random
from VJ . For statements involving positive real parameters, let a = b ± c
mean b − c ≤ a ≤ b + c, and write a � b to mean there is an increasing
function f so that the argument is valid for 0 < a < f(b).

Definition 1. Let f = {1, 2}, and {Vj}j∈f be vertex sets. Let G be a bipartite
graph with bipartition V1, V2 and indicator function gf : Vf → {0, 1}. We say
gf is (ε2, d2)-regular if, for all j ∈ ∂f and functions uj : Vj → [0, 1], we have∣∣∣E[(gf (xf )− d2

)
u1(x1)u2(x2)

∣∣xf ∈ Vf

]∣∣∣ ≤ ε2.

Although this definition looks stronger than the ‘usual’ definition, where
each uj takes values in {0, 1}, it is easy to prove that they are equivalent.

Definition 2. Let e = {1, 2, 3} and {Vj}j∈e be vertex sets. Let G be a
tripartite graph with vertex partition V1, V2, V3, and indicator functions
gf : Vf → {0, 1} which are (ε2, d2)-regular for f ∈ ∂e. Let H be a 3-graph
with indicator function he ≤

∏
f∈∂e gf pointwise, so edges of H are triangles

in G. We say he is (ε3, d3)-regular relative to G if, for all f ∈ ∂e and
functions uf : Vf → [0, 1] with uf ≤ gf pointwise, we have∣∣∣E[(he(xe)− d3

) ∏
f∈∂e

uf (xf )
∣∣xe ∈ Ve

]∣∣∣ ≤ ε3d
3
2.

We also say H is (ε3, d3)-regular with respect to G when we do not explicitly
define the indicator function he.

Our main result is a strengthening of the 3-graph counting lemma devel-
oped previously by Rödl and coauthors Frankl, Nagle, Peng and Skokan [6,
11, 12]. These results require a stronger form of regularity than the above
Definition 2 in which the edges of H are approximately uniformly distributed
over triangles in unions of r subgraphs of G, for some r ∈ N which is large
compared to 1/d2. Taking r = 1 in this formulation results in a strictly
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weaker regularity which is equivalent to our setting. This appeal of working
with the weaker 3-graph regularity is a local characterisation in terms of
subgraph counts. This characterisation does not hold for large values of r in
the stronger 3-graph regularity, thus working with r = 1 recovers the useful
property; see [4, 10].

Our approach differs substantially from that of Nagle and Rödl [11] and
we remove the need to apply any regularity lemma within the proof of our
counting lemma. Another approach, due to Peng, Rödl and Skokan [12] is
to transfer to the ‘dense’ or ‘absolute quasirandom’ setting in which d2 = 1
and appeal to a dense counting lemma. This idea is relevant to our work, as
we depend on a technical result that is proved by a similar transference [10].
Since we work with the weaker regularity of Definition 2 our methods are
stronger than those of [11, 12]. Moreover, our proof resembles an embedding
process used in the blow-up lemma, a feature we hope to exploit in due
course.

Theorem 3 (Counting lemma). Let J be a set and F be a 3-graph on J .
Write ∂F for the union of ∂e over e ∈ F . Let {Vj}j∈J be vertex sets each of
size at least n. For constants 1

n � ε2 � d2 � ε3 � ε′
3 � d3, the following

holds. Let G be a graph with indicators gf : Vf → {0, 1} which are (ε2, d2)-
regular for all f ∈ ∂F . Let H be a 3-graph with indicators he : Ve → {0, 1}
which are (ε3, d3)-regular with respect to G for all e ∈ F .

Then
E
[∏
e∈F

he(xe)
∣∣x ∈ VJ

]
= d

|F |
3 d

|∂F |
2 ± ε′

3d
|∂F |
2 .

To obtain Theorem 3 we adapt the following sketch of the counting lemma
in dense graphs. For simplicity, consider G from the setup of Theorem 3
and let ∂F be a triangle on vertices {1, 2, 3}. We apply a fact commonly
known as ‘slicing’ or ‘regular restriction’ to G[V2, V3], which is is (ε2, d2)-
regular. If Wj ⊂ Vj for j = 2, 3 are subsets of size at least α|Vj |, the induced
subgraph G[W2,W3] is (ε2/α

2, d2)-regular. If the Wj are G-neighbourhoods
of a typical x1 ∈ V1, we would have α = d2 ± ε2 and so given ε2 � d2,
we say the neighbourhood inherits regularity. To count triangles, sum over
x1 ∈ V1 the number of edges in G[G(x1)], which we estimate by the inherited
regularity.

Applying the regularity lemma of Frankl and Rödl [5], one can only
hope to achieve the relation d2 � ε3 between parameters in Definition 2.
Hence G-neighbourhoods are typically too small for the regularity of H to
directly control edges upon them. An analogue of this problem also occurs in
sparse graphs, however Conlon, Fox and Zhao [2] proved a form of regularity
inheritance for that setting. We generalise their approach to hypergraphs
and prove new inheritance lemmas such as 4 below. We deduce Theorem 3
from these lemmas by an appropriate generalisation of the above sketch for
graphs.

To state an inheritance lemma, consider the setup of Theorem 3 and let
0 ∈ J . We show that almost all x0 ∈ V0 have the property that H[G(x0)] is
regular with respect to G[G(x0)]. The parameter measuring the inherited
regularity is ε′

3 � d3, hence this result is much stronger than what one can
deduce directly from Definition 2 using the uf to indicate edges of G[G(x0)].
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Lemma 4 (3-sided inheritance). Let J = {0, 1, 2, 3}, e = {1, 2, 3}, and
F be the complete graph on J . Let 1

n � ε2 � d2 � ε3 � ε′
3 � d3, and

{Vj}j∈J be vertex sets each of size at least n. Let G be a graph with indicators
gf : Vf → {0, 1} which are (ε2, d2)-regular for f ∈ F , and let H be a 3-graph
on Ve with indicator he ≤

∏
f∈∂e gf which is (ε3, d3)-regular with respect to

G.
Then for all but at most ε′

3|V0| vertices x0 ∈ V0, the induced 3-graph
H[G(x0)] is (ε′

3, d3)-regular with respect to G[G(x0)].
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pages 1–30, 2015.
[4] Y. Dementieva, P. E. Haxell, B. Nagle, and V. Rödl. On characterizing hypergraph
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Graphes, volume 260 of (Colloq. Internat. CNRS, Univ. Orsay, Orsay 1976), pages
399–401, 1978.


	1. Introduction
	2. Results
	References

